

FORWARD SCATTER AIRCRAFT DETECTION WITH AMATEUR RADIO NETWORK WSPRNET

Member:

Loi Yi Yang Caden (Raffles Institution)

Mentors:

Neo Jun Hui Gavin, Zhang Rui Xue, Ng Yuting (DSO National Laboratories)

1. Introduction

- WSPR protocol: used for long distance communications by amateur radio operators, records are uploaded to WSPRnet at www.wsprnet.org.
- lonosphere: layer of electrons in the atmosphere that reflects HF signals, extends transmission distances beyond the horizon using skywave propagation.
- FSR: forward scatter radar, allows larger RCS and longer integration times.
- Anomalies in WSPR data could be caused by presence of aircraft [2, 5].
- This project aims to study the feasibility of using WSPRnet to detect and track aircraft.

2. Existing Method

- Recreate and improve upon the existing algorithm GDTAAA [3].
- Calculate the mean and standard deviation across ±3h period.
- Find possible intersection points for links >1 standard deviation from mean.
- First used only short path intersections but later moved to all intersections with a calculated SNR of >-30dB as not enough intersection points were generated.

3. Empirical Study

- Verify the use of standard score to find anomalies, through verifying that the data is unimodal, with significant distance between the bulk of the distribution and the anomalies.
- Account for changes in ionospheric conditions by subtracting trend, then plot a histogram and curve fit on the data.

- SNR(dB) form a unimodal distribution, and anomalies are highlighted when represented in Watts.
- Frequency data is not unimodal, thus difficult to detect anomalies.
- Removing detections with calculated SNR < -30dB, reduces the number of intersections from 12324 to 11804 points [2, 3].

 Analyse case study of QTR901[4]. Only WSPR link between S77HQ and VK6WR, was short path propagation.

- Last record at 15:10, right as the aircraft takes off.
- Last record is flagged as an anomaly in the study. However, from a plot of the data, it does not appear to be anomalous.

4. Theoretical Study

 The Doppler shift can be calculated for HF band to be within ±25 Hz using the equation,

 $f_d=2f_crac{v}{c}$

Signal-to-Noise Ratio (SNR) from FSR can be calculated to be,

$$SNR = rac{P_{tx} \lambda^2 \sigma 30}{{(4\pi)}^3 R_{tx}^2 R_{rx}^2 K T_0 B}$$

 Verify RCS of 45dBm2 for a Boeing 777 at 14MHz used in existing method by comparing a Boeing 777 to a Cessna-172 [1] using the ratio of lengths and frequencies. FSRCS equation is

$$\sigma=rac{4\pi A^2}{\lambda^2}$$

- Ratio of 93MHz to 14MHz, and ratio of length 8.28m, and height 2.72m, to length 73.9m, and height 18.5m -> 83 times bigger.
- RCS of a Boeing 777 is 41dBm2 at 14MHz, so 45dBm2 is plausible.
- Distance increase due to the signal hopping between the ionosphere and the earth can be calculated using

$$d_h = 2n\sqrt{2R\left(R+h
ight)\left(1-\cos\left(rac{d}{2Rn}
ight)
ight) + h^2}$$

- The max. propagation distance is calculated to be 19,600km and the great-circle distance is then calculated to be 19,500km.
- Long path propagation and detection is thus possible under ideal circumstances.
- Note that WSPR signal will only spend around 10% of its propagation time in the same altitude as cruising aircraft.

5. Summary

- Current GDTAAA model cannot be used to reliably track aircraft
- Unable to conclusively verify that data from WSPRnet can/cannot be used to detect and localise aircraft.
- Anomalies in SNR can be detected, highlighted in linear scale.
- Long path propagation has to be considered to increase datapoints, but not all can be decoded by WSPR.

6. References

- [1] Contu et al. Passive Multi-Freq FSR Meas of Airborne Targets Using Broadcasting Signals,
- IEEE TAES, 2017. URL https://ieeexplore.ieee.org/document/7835708 [2] Richard Godfrey. How does WSPR detect Aircraft over long Distances? Tech Paper, 2024. URL https://www.airlineratings.com/articles/mh370-update-new-report-proves-wsprnet-tracking-
- over-long-distance.
- [3] Richard Godfrey et al. MH370 flight path analysis. Case study, 2023. URL https://www.mh370search.com/2023/08/31/mh370-case-study/
 [4] Richard Godfrey et al. Flight QTR901 GDTAAA WSPRnet analysis, Case study, 2023.
- URL https://www.mh370search.com/2023/06/09/qtr901-case-study/
- [5] Robert Westphal. "Geocaching" in the ionosphere, 2021. URL https://hamsci.org/publications/geocaching-ionosphere.